Vibrational autoionization of state-selective jet-cooled methanethiol (CH$_3$SH) investigated with infrared + vacuum ultraviolet photoionization

Min Xie1, Yuan-Pern Lee1,2

1Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan

2Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

[Abstract] Vibrational photoionization efficiency (PIE) spectra of jet-cooled methanethiol (CH$_3$SH) were recorded by excitation of CH$_3$SH to a specific vibrationally excited state with an infrared laser, followed by a tunable laser light in the vacuum ultraviolet region for ionization. Autoionizing Rydberg states, assigned to the ns, np, nd and nf series, were identified. When the IR excitation at 2601 (v_3, SH stretch) and 2948 cm$^{-1}$ (v_2, CH$_3$ symmetric stretch) was employed, the Rydberg series converged to the respective vibrationally excited states (v_3 and v_2) of CH$_3$SH$^+$. When the IR excitation at 3014 cm$^{-1}$ (v_1/v_9, mixed CH$_3$ antisymmetric stretches) was employed, two converging limits towards vibrationally excited states (v_1 and v_9) of CH$_3$SH$^+$ were observed. In addition, when the IR excitation at 2867 cm$^{-1}$ (2v_{10}, overtone of CH$_3$ deformation) and 2892 cm$^{-1}$ (2v_4, overtone of CH$_2$ scissor) was employed, both $\Delta v = -1$ and -2 ionization transitions were observed. In all spectra, the ns and nd series show more intensity than the other Rydberg series, which is consistent with the fact that HOMO is a p-like lone pair orbital on the S atom.

[Introduction] Vibrationally excited autoionizing Rydberg states, having a vibrationally excited ion core and a Rydberg electron, are superexcited states that lie above the first ionization threshold. Vibrational autoionization, a form of radiationless transition, can occur readily in these states through the conversion of vibrational energy into electronic energy of the electron to be ejected, resulting in a free electron and an ion.1,2 In general, these superexcited states are difficult to prepare with single-photon excitation because of the poor Frank-Condon overlap. They may be prepared via two-photon or multi-photon excitation. The most common method employs the Rydberg-Rydberg transition, in which the molecule is first excited to a Rydberg state below the ionization threshold with one or two photons in the ultraviolet (UV)/visible range; this Rydberg state is subsequently excited to a high-lying autoionizing state with another photon. The second method employs Rydberg excitation of a vibronically excited state, in which the molecule is first excited with an UV laser to a specific excited vibrational level of the electronically excited state, which is subsequently excited with a second UV photon to the high-lying autoionizing states.

In this work, we performed IR-VUV two-color photoionization experiments on jet-cooled CH$_3$SH by firstly exciting CH$_3$SH to a specific vibrationally excited state with an IR laser, followed by excitation to the auto-ionizing Rydberg states with a tunable VUV laser. Distinct from that of the single-photon VUV photoionization efficiency (PIE) spectrum of CH$_3$SH, many features appeared and were assigned to four autoionizing Rydberg series converging to the vibrationally excited states of CH$_3$SH$^+$.

[Methods] The experimental apparatus consisted of a supersonic jet, two laser systems, and a time-of-flight mass spectrometer. Jet-cooled gaseous CH$_3$SH (2%) seeded in Ne was produced on supersonic expansion of the mixture through a pulsed Even–Lavie valve (10 Hz) with a stagnation pressure ~2 atm. The IR-VUV-PIE spectra were recorded by exciting the molecule to a specific vibrationally excited state with IR light at a fixed wavenumber and scanning the
wavenumber of the VUV laser light while monitoring the CH$_3$SH ion signal.

[Results and Discussion] The IR-VUV-PIE spectrum of CH$_3$SH in Fig. 1 was recorded with excitation of the SH-stretching (v_3) mode of CH$_3$SH at 2601 cm$^{-1}$. Values of ionization energy (IE, 76256 cm$^{-1}$) and IE + v_3 (78758 cm$^{-1}$) are indicated with black dotted lines in Fig. 1. Some weak bands with distinct structures appeared when the total excitation energy is above the IE near 76256 cm$^{-1}$, indicating that some ionization took place through vibrational autoionization. The ion signal increased abruptly at wavenumbers corresponding to IE + v_3 near 78860 cm$^{-1}$ because the direct ionization of CH$_3$SH in its ground state became dominant when the VUV light exceeded the IE. The wavenumbers of these lines were fitted to the Rydberg expression. Four Rydberg series with quantum defects $\delta = 0.33 \pm 0.01, 2.11 \pm 0.01, 1.53 \pm 0.01$ and -0.03 ± 0.01, were identified, all with a converging energy of $IE = 78770 \pm 10$ cm$^{-1}$, which is similar to $IE (= 76256$ cm$^{-1}$) plus the vibrational excitation energy 2502 cm$^{-1}$ (v_3) of CH$_3$SH$^+$.

The IR-VUV-PIE spectrum of CH$_3$SH in Fig. 2 was recorded with excitation of the CH$_3$-deformation overtone (2v_{10}) mode of CH$_3$SH at 2867 cm$^{-1}$. Three Rydberg series with quantum defects $\delta = 0.33 \pm 0.01, 2.12 \pm 0.01$, and 1.56 ± 0.01 were identified. The IE and IE + v_{10} (\sim77630 cm$^{-1}$) are marked as black dotted lines in Fig. 2. Although with less intensity, the Rydberg series appeared also below total energy of 77630 cm$^{-1}$ (IE + v_{10}), indicating that the vibrationally autoionization propensity rule of $\Delta \nu = -1$ does not hold strictly. The background of the PIE curves in Figs. 1 and 2 are nearly zero for total energy less than \sim78600 cm$^{-1}$, indicating that even when the total energy of the IR + VUV photons exceeds the IE, direct ionization is negligible.

By exciting the CH$_3$SH to other vibrational states while scanning the VUV light, the corresponding vibrational-state-selected autoionization PIE spectra were obtained. The converging limits, the quantum defects, and the average quantum yields of the vibrational-state-selected autoionizing series will be discussed.

[References]